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Abstract

We investigate scale and boundary conditions effects on the elastic and elastoplastic behavior of periodic fiber-
reinforced composites. Four boundary conditions, including displacement controlled, traction controlled, mixed
(normal displacements and zero shear tractions specified on each boundary) and periodic boundary conditions, are
considered. Influence of several factors — such as the window size, the mismatch between component phases’ properties,
and the types of boundary conditions — on the apparent mechanical response (elastic and elastoplastic) is studied. It is
shown that the apparent properties obtained under our mixed and periodic conditions are the same within numerical
accuracy, and they are bounded by those obtained using displacement and traction controlled boundary conditions.
From our study of elastic case, it is found that the bounds are very sensitive to the mismatch of phase moduli: the higher
the mismatch, the wider are the bounds. In the study of elastoplastic case, monotonically increasing proportional
loading is applied to different sized windows under each of the above four boundary conditions. An explanation of
response curves can be reached through the observation of shear bands, under these various boundary condi-
tions. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Elasticity; Elastoplasticity; Scale and boundary conditions effects; Fiber-reinforced composite materials; Energy methods;
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1. Introduction

Conventional mechanics of materials is, to a large extent, based on the concepts of representative volume
element (RVE) and effective property. Mathematically, the RVE is an infinite length scale limit, relative to
the microscale (or the length scale of a single heterogeneity), in which the material appears uniform and the
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continuum concept may be applied. It is well known that, thanks to this uniform setting, the methods of
analysis, especially with respect to boundary value problems, can successfully be applied.

For example, the deterministic finite element method relies on the homogeneous continuum assumption
with regard to every element within the mesh. However, many problems in mechanics of materials require a
careful consideration of dependent fields over scales not infinitely larger than the microscale. The postu-
lated RVE concept, which requires elements to be much larger than a single heterogeneity, can hardly be
used and a study of properties of a finite size domain is necessary.

When referring to the finite size domain of material the term apparent property is used (Huet, 1990).
The term effective is reserved for the overall response of RVE, which is infinite compared to a single fiber
dimension. The dependence of apparent properties on the window size and boundary conditions applied is
referred to as coupled scale and boundary conditions effects. The quantitative dependence of apparent
properties on these and other factors, such as the mismatch of phases’ properties, volume fractions,
geometric information of microstructures, is impossible to obtain by purely analytical methods and
was mainly investigated numerically for linear elastic periodic composites (e.g., Hollister and Kikuchi,
1992; Pecullan et al., 1999) and for linear elastic random materials (e.g., Ostoja-Starzewski, 1993, 1998,
1999).

Little work has been done on the topic of scale and boundary conditions effects of nonlinear hetero-
geneous materials even though the research on the nonlinear effective response of heterogeneous materials
has actively been carried out both theoretically (e.g., Accorsi and Nemat-Nasser, 1986; Gibiansky and
Torquato, 1998; Ponte Castaneda, 1992; Ponte Castaneda and Suquet, 1998; Talbot and Willis, 1985, 1998)
and numerically (e.g., Brockenbrough et al., 1991; Shen et al., 1995; Werwer et al., 1998). Assuming the
form of constitutive law employed by Kroner (1994), Hazanov (1999) showed that the effective response of
a nonlinear elastic heterogeneous material is bounded by ensemble average responses of finite size domain
of material under displacement controlled and traction controlled boundary conditions. Jiang et al. (2001a)
extended this result to elastoplastic materials under proportional loading.

In this paper we carry out an investigation of scale and boundary conditions effects on the elastic
and elastoplastic behavior of a two-dimensional (2D) periodic fiber-reinforced composite with circular
inclusions arranged in a triangular (equilateral) array. More specifically, we consider the case of long
cylindrical fibers with circular cross-sections. Such geometry represents a transverse plane of a unidirec-
tional fiber-reinforced composite, the deformation being of plane strain type. The boundary condi-
tions considered are displacement controlled, traction controlled, periodic and a special kind of mixed
boundary condition, in which normal displacements and zero shear tractions are specified on each
boundary.

The outline of the paper is as follows. Following the problem statement, we review the hierarchy
structure of nonlinear elastic properties. This result can also be used in the elastoplastic response analysis
under a monotonically increasing proportional loading. In this situation, the elastoplastic response can be
treated in the framework of deformation theory, which is formally equivalent to the physically nonlinear,
small-deformation elasticity. We then investigate numerically the effects of scale, boundary conditions, and
material mismatch on apparent elastic and elastoplastic properties of fiber-reinforced composite. It is
shown that the responses under the periodic boundary condition and the mixed boundary condition
(normal displacement and zero shear tractions specified on the boundary) are the same within numerical
accuracy for the loadings considered, and they are bounded by those under displacement and traction
controlled boundary conditions. In general, the differences between responses under various boundary
conditions become smaller as the window size increases.

Our paper extends earlier studies of apparent elastic properties of periodic composites (e.g., Hollister and
Kikuchi, 1992; Pecullan et al., 1999). We consider additional boundary conditions and conduct both elastic
and elastoplastic analyses.
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2. Theoretical background

We consider periodic composite materials characterized by one microscale, i.e., the diameter d (= 2r) of
fibers (see Fig. 1). The fibers are arranged in an equilateral triangular array. We assume that both matrix
and fibers are isotropic; fibers are elastic, while the matrix is either elastic or elastoplastic. The interface
between each fiber and the matrix is perfectly bonded. All the fibers are continuous and aligned, so that our
problem is one of plane strain in the x;, x,-plane. We obtain transverse elastic and elastoplastic responses of
this composite under several types of boundary conditions applied to finite sized domains of material; such
a domain is called a window (Ostoja-Starzewski, 1993). The smallest window, a unit cell, is shown in Fig. 1.
We define the unit cell in Fig. 1 to be of scale §,. We use 6 = ndy to represent a larger window whose size is
n times Jy in both x; and x, directions. The window of size J is denoted as Bj;, and its boundary is 0B;.

It is known that the Hill condition, 6 : € =@ : € is the necessary and sufficient condition for the equi-
valence of energetically and mechanically defined apparent properties of heterogenous linear elastic ma-
terials (Huet, 1990); ¢ and ¢ are the stress and strain tensors, respectively, and we use an overbar to denote a
volume average.

The Hill condition for nonlinear heterogeneous materials, in a static case, was given by Hazanov (1998,
1999)

/o-:ds:/E:dE (2.1)

It is equivalent to
/ (t—o-n)-dlu—g-x)dS=0 (2.2)
0Bs
From Eq. (2.2), one can obtain three kinds of boundary conditions. They are

Kinematic uniform boundary condition (or displacement controlled boundary condition, dd)

u==%-x, VYx€O0B; (2.3)
Static uniform boundary condition (or traction controlled boundary condition, tt)

t=6-n, Vx¢€O0Bs (2.4)
Mixed uniform boundary condition (dt)

(t—6-n)-(u—t-x)=0, Vxec0B; (2.5)

Fig. 1. Periodic composite and a unit cell.
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Besides the above boundary conditions, we also use periodic boundary condition (pp), i.e.,
u(x+L)=u(x)+e-L, t(x+L)=—t(x), VYxe€0B; (2.6)
We use the strain and stress averaging theorems

te=¢, o=0" (2.7)

where €° and ¢° are uniform applied strain and stress tensors. Recall the classical fact that the strain av-
eraging theorem requires the assumption of perfectly bonded fiber-matrix interfaces. Thus, alternately, we
can write the conditions (2.3) and (2.4) as

u=¢-x, t=d¢-n (2.8)

It was first proved by Huet (1990) that the linear effective elastic stiffness is bounded by apparent
properties obtained under displacement and traction boundary conditions. Following the same approach,
for a nonlinear elastic heterogeneous material, in (Jiang et al., 2001a), we found

w (&%) < w(e ndy) < w(e,n'dy) < w(e”,dp) <wV(?) Vl<n' <n (2.9)
and
w(6”) < w*(6°,ndy) < w(a®,n'dp) < w'(a”,3p) < wR(6®) VI<n' <n (2.10)

with w(g, ndy) and w*(6°,ndy) representing the volume average strain energy density and the volume av-
erage complementary energy density functions under displacement and traction boundary conditions, re-
spectively, of a window of size 6 = ndy. w" () and w®(6°) stand for, respectively, the quantities obtained
under Voigt assumption (strain is uniform everywhere in the material) and Reuss assumption (stress is
uniform everywhere in the material).

It is known that the effective elastoplasticity under proportional loading can be investigated within a
framework of effective nonlinear elasticity. For example, the problem of an isotropic physically nonlinear
incompressible elastic material is equivalent to the J,-deformation theory of plasticity. In this case, fol-
lowing (Ponte Castaneda and Suquet, 1998), the strain energy density and complementary energy density
can be written as

w(e) = ¢(eeq) (2.11)
and

w'(6) = (0eq) (2.12)

where ¢ and y are dual convex potentials of a scalar variable. g.q and &.q are the von Mises effective stress
and effective strain, respectively

Oeq = (304 : 6q)'"?, Eeq = (3€q : €)'’ (2.13)
o4 and g4 are the deviatoric stress and strain, respectively

64 =6 —onl, g =¢8&—¢enl (2.14)
where oy, and ¢, are the hydrostatic stress and strain

om = 3tr(o), &m = itr(g) (2.15)
The resulting stress—strain relations can be written as

64 = 2U(&eq)Ed (2.16)
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where

Teq  @'(8eq) Ocq
) Tea _ ¢ 2.17
Hlee) 3 3teg 3 (0eq) (2.17)

The Ramberg-Osgood model in the J,-deformation theory of plasticity corresponds to the choice

. 1 ) [N Oeq n
w(ffeq)—6uof»'ec,+n+1 (JO> (2.18)

where y, is the initial elastic shear modulus, gy is the yield stress, ¢ is the yield strain, » > 1 is the hardening
exponent, and prime denotes a derivative.

In our work, we go one step further with the following assumption: for a heterogeneous material, the
investigation of apparent elastoplastic response, under proportional monotonically increasing loading, can
also be treated within the framework of deformation theory, which is formally equivalent to a physically
nonlinear, small-deformation elasticity theory.

When the material is linear elastic, we have

w(e’,ndp) =1 : Cot =", w(a’,nd) =16": Sy ¢ 6 (2.19)

for apparent properties, using boundary conditions (2.3) and (2.4), respectively, and

Weff — %80 . Ceff . 80, W*eff — %0_() . Seff . 60 (220)

for effective properties. In Eq. (2.19) the superscripts dd and tt denote displacement and traction boundary
conditions, respectively, and the subscript nd, indicates the apparent property of a window of size nd.
Because of (§)™" = €, Eqgs. (2.9) and (2.10) can be reduced to

Ch = (8" < (85)7 < (S)s) " < (S

noop

)< CT <Ol < Cl < Cl < CY, Vi< <n
(221)

which is the structure obtained by Huet (1990) and Ostoja-Starzewski (1993). The comparison of tensors is
understood in terms of quadratic forms. This means that for two fourth rank tensors C and D, the as-
sumption C > D implies that

(C—D):a:a>0 forany tensor a0 (2.22)

The linear apparent elastic property under mixed boundary conditions was first discussed by Hazanov and
Huet (1994) and Hazanov and Amieur (1995). They proved that, for any given window,

C'<C"< M sM<cst<st (2.23)

In the next section, we also choose a special mixed boundary loading, under which we investigate the elastic
and elastoplastic response.

3. Apparent elastic properties

We assume both matrix and fibers to be linearly elastic and isotropic. For a fiber-matrix composite with
triangular packing, the apparent elastic tensor of a window, with size ndy, is orthotropic. The apparent
tensor can be represented by
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’ Cin Cun 0
C"™=|Ciun Con O (3.1)
0 0 Cun

with Cyj1; # Cymp. The orthotropy becomes weaker as the window size increases. When the window be-
comes infinite (RVE size), the apparent elastic tensor will coincide with the effective one, which is isotropic
for a triangularly arranged fiber-reinforced composite.

We use a finite element analysis (FEA) to investigate the apparent properties. Two loadings for all four
kinds of boundary conditions (dd, dt, tt, pp) are used to investigate the apparent properties of a given
window:

Loading (1): Uniform in-plane all-around extension, corresponding to a macroscopic strain &), =
&5, = & (or oY, = 0%, = ¢"); we calculate the total energy U, as a sum of energies of all elements in the
window.

Loading (2): Uniform extension in x; direction and a uniform compression in x, direction, &), =
—&), =& (or 6}, = —a9, = a°), corresponding to a shear strain &}, = ¢° (or shear stress oY, = ¢°) in a co-
ordinate system rotated by 7/4 for an effectively homogeneous material. We then calculate the total energy
U2y as a sum of energies of all elements in the window.

Under the periodic boundary condition (Eq. (2.6)) applied on the unit cell shown in Fig. 1, the obtained
apparent properties are just the effective ones, i.¢., isotropic. We obtain the effective bulk and shear moduli,

respectively, as

U U,
geff — ) . et = 2 . (3.2)
2V (€9) 2V (&)

Under the displacement (dd) boundary condition, we apply Eq. (2.3) with &}, =&, =1 and &}, =0 to
obtain Uj;), and Eq. (2.4) with &), = —¢&), = 1 and &}, = 0 to obtain U. Under the mixed (dt) boundary
condition, we apply Eq. (2.5) with ¢}, = &3, = 1 and ¢, = 0 to obtain U;), and Eq. (2.5) with &}, = —¢), = 1
and ¢, = 0 to obtain Up). We use value 1 for applied strains to simplify the algebra in this linear elastic
problem. In order to study the convergence rate of the apparent properties to the effective ones, under
displacement or mixed boundary conditions, we define the following apparent bulk and shear moduli
(corresponding to the effective isotropic counterparts, with ¢ = 1 in Eq. (3.2))

U, U,
K*P = % and P = %, under dd and dt (3.3)
Under the traction (tt) boundary condition, we use Eq. (3.4) to define the apparent bulk compliance 45"
and shear compliance x5 with (¢}, =63, =1, oY, =0 in Eq. (2.4)) and (¢}, = =63, =1, ¢¥, = 0 in Eq.
(2.4)), respectively,

2U, 2U,
AP — % and §*PP = %, under tt (3.4)

The inequality (2.21) means that, when &' < §, we have (C3' — C$%):e:¢ > 0 and (S — S%):6:6 > 0. For 2D

elasticity, € = (&1, &, slz)T and ¢ = (041,00, alz)T. From Eq. (2.21) and definitions in Egs. (3.3) and (3.4),
. T T .

using € = (1,1,0)" and 6 = (1,1,0) gives

KR = (48 < ()7 < () < (l) T < KT < K < K

n'dy

<Ky <KV, Vi<n' <n (3.5)
and using € = (1,—1,0)" and ¢ = (1,—1,0)" gives

R

eff
u

-1 -1 -1 -1
) < )T < Ol < ()T < i < uls <l <l <p¥, Vi< <n (3.6)
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The difference between K% and (4%)™' (or the difference between udd and (x%)™') as a function of the
window scale 0, can be a measure of the convergence of window size to the RVE size. The difference be-
tween K™ and KT (or the difference between 157 and 1, app indicates dd or tt) as a function of window
scale J, can be a measure of the decay of anisotropy of apparent property, which also indicates the con-
vergence of apparent properties to the effective ones.

We conduct numerical calculations (by ANSYS 5.4) to verify the above inequalities (3.5) and (3.6) and
investigate the convergence of apparent properties to effective ones. In the parametric study, we fix the
Poisson’s ratios of inclusion and matrix as v) = v = (.3, and vary the ratio between the Young’s moduli
of both phases (Young’s modulus of matrix is assumed to be 1). The volume fraction of fibers is assumed as
35%. The results are given in Tables 1 and 2.

It can be seen that the apparent property under our mixed boundary condition is the same, within
numerical accuracy, as the one under periodic boundary condition, which actually gives the effective
property. It is bounded by those obtained under displacement and traction boundary conditions. Note that
for the second loading case (needed to evaluate u®P), we could alternatively use Eq. (2.3) with &}, = &), =0

Table 1
Apparent bulk modulus K as a function of stiffness mismatch, boundary conditions and window size
Traction (tt) Periodic (pp) or mixed (dt) Displacement (dd) Window size
EW/EM™ =0.001 0.00643 0.336 0.359 0 =0
0.0105 0.347 0 =20
0.0190 0.345 0 =4,
0.1 0.325 0.442 0.461 0 =20
0.364 0.452 0 =20
0.399 0.450 0 =45
10 1.503 1.544 1.864 0 =20
1.521 1.682 0 =20
1.529 1.606 0 =49,
1000 1.627 1.681 46.634 0 =10
1.653 20.797 0 =20
1.663 10.691 0 =44,

Table 2
Apparent shear modulus x5 as a function of stiffness mismatch, boundary conditions and window size
Traction (tt) Periodic (pp) or mixed (dt) Displacement (dd) Window size
EW/EM™ =0.001 0.00267 0.148 0.173 =20y
0.00623 0.160 0 =20
0.0139 0.156 0 =44
0.1 0.123 0.187 0.207 0 =0y
0.152 0.197 0 =20
0.171 0.194 0 =44
10 0.594 0.642 0.832 0 =0
0.620 0.748 0 =20
0.631 0.699 0 =44
1000 0.640 0.713 25.650 0 =0
0.681 14.825 0 =20

0.698 8.428 0 =40,
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and &, = 1. For such a loading, another type of mixed boundary condition, which involves specified
tangent displacements and zero normal tractions, would give us the same response as the periodic boundary
condition.

As the window size increases, the bounds become tighter, and the differences between apparent prop-
erties under different kinds of boundary conditions become smaller. The higher is the mismatch of the
phases’ properties, the wider are the bounds. For soft inclusion case, the effective property is close to the
upper bound, while for stiff inclusion case, it is close to the lower bound. This behavior is further illustrated
by Figs. 2 and 3, which show the contour plots of element energy of 6 = 4, under loading (2). Fig. 2 shows
that, for the stiff fiber case, the patterns under periodic and traction boundary conditions are alike, while
Fig. 3 shows that, for the soft fiber case, the periodic and displacement boundary conditions patterns are
akin.

ANSYS 5.4

PON e s
w
o
w0

1000R000

Fig. 2. Contour plots of elastic strain energy when § = 45, and E® /E™ = 10 under loading (2): (a) periodic boundary conditions (pp),
(b) displacement boundary conditions (dd), (c) traction boundary conditions (tt).

SUB =1 SUB =1
TINE=1 TINE=1
SENE SENE
DX =32.237 DI =128.948
SMN =.00175L SMN =.026203
SID =, 108895 S =1,727
.00175L . 026203
- . 013656 - .215126
% L025861 g e
. 037466 . 59297
D o:4937[ D 781893
- 061275 - « 970815
[ R rer [ )
D .0asoes I: 1.349
D . 09699 D 1.538
[T [

Fig. 3. Contour plots of elastic strain energy when é = 48, and E¥ /E™ = 0.1 under loading (2): (a) periodic boundary conditions (pp),
(b) displacement boundary conditions (dd), (c) traction boundary conditions (tt).
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4. Apparent elastoplastic responses

In this section, we study the elastoplastic behavior of metal-matrix composites (MMC) as an example of
general nonlinear composites. The MMC considered here consists of elastoplastic isotropic matrix rein-
forced with linearly elastic, isotropic fibers. The volume fraction of fibers is 35% as before.

From the study of apparent elastic properties in the last section we already found that there is a big
difference between the apparent properties obtained under various boundary conditions if there is a sig-
nificant mismatch between the properties of fibers and matrix. In order to quantify the mechanical response
during plastic deformation, we consider a special metal-matrix composite, in which elastic properties of
matrix and fibers are the same. For the matrix, the von Mises yield criterion is used, and the rate-inde-
pendent plasticity with associated flow rule and isotropic hardening is assumed. The matrix’ stress—strain
curve is characterized by a piecewise power law

o [ efe, if e<eg
oo | (e/&)", else

with yield stress gy = E¢y, where E is Young’s modulus and ¢, is yield strain.

In the elastic range (prior to yielding) our material is homogeneous with the stress and strain being
uniform, and its elastic response is independent of the boundary conditions. We choose the same elastic
properties of matrix and fibers on purpose so that we can directly study the effect of coupled scale and
boundary conditions effects for plastic material response.

In numerical calculations we apply loading (2) discussed in Section 3. For clarity, we restate the loadings
under all the boundary conditions: (i) Under displacement and periodic boundary conditions, the pre-
scribed strains are &), = —&, = &%, ¢, = 0. (ii) Under traction boundary condition, the prescribed stresses

are ¢}, = —03, = d°, ¢, =0. (iii) Under mixed boundary condition, the prescribed strains are &, =

—&9, = ¢°, and the prescribed stress is ¢}, = 0.

The material constants used in our calculations (Eq. (4.1)) are & = 1/300, gy = 170 MPa, N = 0.1,
E = 0y/ey = 51 GPa, v = 0.3. The computation is done by the FEA software ABAQUS 5.5 (Hibbit, Karlson,
Sorensen, Inc., , 1995). Two window sizes are considered: dy and 4d.

In Figs. 4 and 5, we show the equivalent plastic strain (PEEQ) contour plots under different boundary
conditions, when é = dy and ¢ = 49, respectively. The equivalent (effective) strain is defined in Eq. (2.13),.
In all the contour plots, under displacement (Figs. 4c and 5c), mixed (Figs. 4b and 5b), and periodic (Figs.
4a and 5a) boundary conditions, we show the equivalent plastic strain (PEEQ) when applied strain in the
x-direction is 15 times the yield strain g;, while under traction boundary conditions (Figs. 4d and 5d) we
show the PEEQ when applied stress in the x;-direction is the same as the yield stress gy.

Under displacement boundary conditions at é = dy (Fig. 4c), it is observed that there are two kinds of
shear bands formed, one around the fibers at the corners and one along the lines having angles of 7/3 and
27/3 with respect to the x;-direction. The largest plastic deformation occurs in the interior of the unit cells
and close to the interfaces between matrix and fibers. There are regions in the matrix with only elastic
deformation. This is why the composite under displacement boundary conditions is stronger than the
composite under other conditions, whose shear band characteristic will be discussed below. Under traction
boundary conditions (Fig. 4d), the dominant shear bands are oriented at /4 and go through the matrix in
unit cells. The largest plastic deformation is not at the interface between fiber and matrix, but is located
near the centers of top and bottom boundaries of a window. The shear band patterns under periodic and
mixed boundary conditions (Fig. 4a and b) are very similar to each other. In both cases, the shear bands are
distributed uniformly in the matrix, and there is no dominant shear band crossing the matrix. The shear
band patterns under traction, periodic and mixed boundary conditions give the explanation of character of
the associated stress—strain curves given in Fig. 6, showing that the elastoplastic behavior under traction
boundary conditions is softer than those under periodic and mixed conditions. The responses under the

(4.1)
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PEEQ VALUE

YALUE

+0.00E+00 C00E+00
.:4-1,111!-[]2 84E-02
+2.21E-02 E7E-02
+3.32E-02 . S1E-02

+4. 43E-02 C13E-01

+5. 53E-02 42E-01
+6.64E-02 70E-01

+7. T4E-02 L 98E-01
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+0_ 0BE-02 -S5E-01
+1.11E-01 84E-01
+1.22E-01 12E-01
._+1, 33E-01 -40E-01
+1.44E-01 68E-~01

PEEQ YALUE VALUE
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~3. 68E-01 +2:A0E=1.1

+4. 14E-01 TOE-01

+4. 60E-01 ODE-01

+5. D6E-01 JE=01
ld.szg_al 60E-D1
+5 08E-D1 AaE=01

Fig. 4. Contour plots of equivalent plastic strain (PEEQ) when 6 = dy: (a) periodic boundary conditions (pp), (b) mixed boundary
conditions (dt), (c) displacement boundary conditions (dd), (d) traction boundary conditions (tt).

latter two conditions are identical within numerical error. The similarity between the elastic (see last sec-
tion) and elastoplastic responses under mixed and periodic boundary conditions can be expected because
under periodic conditions, the deformation of unit cells adjacent should be symmetric about the common
boundary. This means the boundaries of a unit cell under periodic boundary conditions should be shear
stress free, which is, in fact, required in our mixed boundary condition under the loading considered.
When the window size increases (0 = 4d;), from Fig. 5 we see similar trends to those at § = dy, but the
differences between the PEEQ patterns under different boundary conditions become smaller. However,
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Fig. 5. Contour plots of equivalent plastic strain (PEEQ) when 6 = 44,: (a) periodic boundary conditions (pp), (b) mixed boundary
conditions (dt), (c) displacement boundary conditions (dd), (d) traction boundary conditions (tt).

under traction boundary conditions (Fig. 5b), we still observe more plastic deformation concentrated at the
window edges, compared to the ones under other boundary conditions.

In Fig. 6, we plot the response curves (averaging stress—strain relationship in x;-direction) under different
boundary conditions when § = dy and d = 44,. It shows that, as the window size increases, bounds become
tighter, and they are closer to the effective response curve. We also see that the response under the particular
mixed boundary condition, considered in this paper, does not depend on the window size, and it is almost
the same as the effective response obtained under periodic boundary condition.
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Fig. 6. Elastoplastic stress—strain responses under different boundary conditions.

Our paper (Jiang et al., 2001a) gave results on coupled scale and boundary conditions effects valid for
any elastoplastic hardening material. They were derived for microstructures of arbitrary spatially homo-
geneous and ergodic statistics. In this paper we illustrate it for a composite with a periodic microstructure, a
particular type of strict-sense, cyclo-stationary statistics. We chose an elastoplastic law of Ramberg—
Osgood type for simplicity, and provided numerical results for one choice of parameters. Other specific
constitutive laws, as well as other selections of parameters, could be implemented, but no extra generality of
qualitative behaviors would be accomplished. More specifically, the effective elastoplastic response would
be bounded from above and below by the apparent ones obtained from displacement and traction
boundary conditions, and these bounds would become tighter for larger window sizes. Further parametric
studies can be done in the future.

5. Concluding remarks

We investigated the scale and boundary conditions effects on the elastic and elastoplastic responses of
periodic (triangular packing) 2D composites. Even though the effective properties are isotropic, the ap-
parent ones under displacement and traction controlled boundary conditions are orthotropic. It is shown
that the apparent elastic and elastoplastic properties obtained under mixed and periodic conditions are the
same within numerical accuracy, and they are bounded by properties obtained using displacement and
traction controlled boundary conditions. This result tells us that for a periodic composite, one can use the
smallest window, a unit cell, subject to our special mixed boundary condition (normal displacements and
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zero shear tractions specified on each boundary) for the two loadings considered, to obtain the effective
response, by either numerical simulation or real experiment.

In addition, we find that bounds on effective elastic moduli are very sensitive to the mismatch of phase
moduli: the higher the mismatch, the wider the bounds. As the window size increases, the difference between
the responses under different boundary conditions becomes smaller.

Our elastoplasticity study showed that the stress—strain curves under periodic boundary conditions (i.e.,
effective stress—strain) curves are bounded, respectively from above and below, by responses under dis-
placement and traction boundary conditions, and, as the window size increases, the bounds become tighter.

This investigation provides a framework for studying composites with random fiber arrangements. For
non-periodic composites, we cannot use periodic boundary conditions. Thus the issue of the choice of
boundary condition and window size becomes important. This subject was studied in (Jiang et al., 2001b) in
the context of out-of-plane elasticity and in (Jiang et al., 2001a) in the context of in-plane elastoplasticity of
random composites.

Finally, the focus of this paper is on “‘computational experiments” which allow us to predict effective and
apparent properties of composite materials numerically. The following issues guided us not to include
experiments:

pure displacement and traction conditions are very difficult to realize in the laboratory;

boundary conditions usually employed in experiments are of certain mixed type where tractions are ap-
plied on one part of the boundary, and displacements on the other; the mixed boundary conditions con-
sidered in this paper are of special type where one component of traction and another one of
displacement is specified on the entire boundary; similar boundary conditions were applied experimen-
tally by Papka and Kyriakides (1999).
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